浙江农业科学 ›› 2023, Vol. 64 ›› Issue (3): 694-704.DOI: 10.16178/j.issn.0528-9017.20220336
王小秋(), 仇亮, 翟彩娇, 宋益民, 程玉静(
), 刘水东
收稿日期:
2022-04-02
出版日期:
2023-03-11
发布日期:
2023-03-11
通讯作者:
程玉静
作者简介:
程玉静(1984—),女,副研究员,硕士,主要从事蔬菜高效栽培研究工作,E-mail: yjcheng_1699@163.com。基金资助:
Received:
2022-04-02
Online:
2023-03-11
Published:
2023-03-11
摘要:
黄秋葵为锦葵科一年生草本植物,其嫩果富含类黄酮、多酚、氨基酸、多糖等生物活性物质,为人们熟知的保健蔬菜。食用黄秋葵具有一定的抗氧化、抗肿瘤、抗癌、抗糖尿病以及免疫调节作用,黄秋葵多糖被认为是与上述生物活性相关的物质。黄秋葵多糖的提取、分离纯化以及结构分析是开展生物活性研究的前提,本文对目前黄秋葵的提取、分离纯化和结构分析进行阐述,以期为黄秋葵多糖研究提供参考。
中图分类号:
王小秋, 仇亮, 翟彩娇, 宋益民, 程玉静, 刘水东. 黄秋葵多糖提取、分离纯化及结构分析方法研究进展[J]. 浙江农业科学, 2023, 64(3): 694-704.
试验材料 | 提取方法 | 纯化方法 | 提取率/% | 平均分子量/u | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
秋葵叶片 | 热水浸提法 | TCA、DEAE-cellulose、DEAE-Sephadex | 7.1 | 1.9×105 | ||||||||||
秋葵嫩果 | 超声波辅助法 | DEAE-cellulose | 13.99±0.52 | 2.19×105 | ||||||||||
秋葵种子 | 热水浸提法 | DEAE-Sephadex | NA | NA | ||||||||||
秋葵果荚 | NA | NA | NA | 2.174×106 | ||||||||||
秋葵果荚 | 热水浸提法 | HP-5 column、DEAE-Sepharose、超滤膜(100 kDa) | 1.10 | >2.99×106 | ||||||||||
秋葵叶片 | 超声波辅助法 | NA | 3.11 | 26.9×103 | ||||||||||
木质化秋葵果荚 | 热水浸提法 | Sevage、DEAE cellulose | 0.50 | 6.59×105 | ||||||||||
秋葵果荚 | 超声波辅助法 | DEAE cellulose | NA | 2.84×105 | ||||||||||
秋葵花 | 水浸提法 | DEAE cellulose、DEAE-Sephacryl | NA | 1.7×105 | ||||||||||
秋葵花 | 热水浸提法 | DEAE cellulose、DEAE-Sephacryl | 15.36 | 2.741×105 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE cellulose | NA | 5 198 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE cellulose | NA | 2 121 804 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE celluloseDEAE-Sephacryl | NA | 9.12×104 | ||||||||||
秋葵果荚 | 碱提法 | DEAE cellulose、Sephacryl | NA | 9.79×104 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE-cellulose、DEAE-Sepharose | 7.90 | 5.8×105 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE-Sepharose | 0.59 | NA | ||||||||||
秋葵果荚 | 微波辅助法(20 kHz) | Sevage | 13.14±0.05 | 7.28~732.83×105 | ||||||||||
秋葵果荚 | 微波辅助法(40/60 kHz) | Sevage | 14.15±0.04 | 0.85~714.93×105 | ||||||||||
秋葵果荚 | 热水浸提法 | HP-5 column | 14.6±1.2 | 1.202×106 | ||||||||||
秋葵果荚 | 超声波辅助法 | DEAE-Sepharose | 10.35±0.11 | 1.92×105 | ||||||||||
秋葵果荚 | 超声波辅助法 | DEAE-cellulose | NA | 3.86×105 | ||||||||||
秋葵果荚 | 热水浸提法 | NA | NA | NA | ||||||||||
秋葵果荚 | 螯合剂法 | NA | NA | NA | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE-cellulose、DEAE-Sephadex | 8.60 | 8.8×103 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE-Sepharose、TCA | 1.3 | 1 380 | ||||||||||
秋葵果肉 | 热水浸提法 | NA | 29.40 | 6 436×103~7 432×103 | ||||||||||
秋葵种子 | 水提醇沉法 | DEAE-Sephadex、透析 | NA | 191 838.9 | ||||||||||
秋葵茎秆 | 超声波辅助法 | 乙醇和硫酸铵的双水相萃取体系 | 23.59 | NA | ||||||||||
秋葵籽 | 热水浸提法 | DEAE cellulose、DEAE-Sephacryl | 5.82 | 7.09×105 | ||||||||||
秋葵果皮 | 热水浸提法 | Sevag,透析48 h脱盐 | NA | NA | ||||||||||
秋葵果皮 | 螯合剂提取法 | Sevag,透析48 h脱盐 | NA | NA | ||||||||||
秋葵果皮 | 碱提取法 | Sevag,透析48 h脱盐 | NA | NA | ||||||||||
秋葵果荚 | 超声波辅助法 | NA | 6.88 | NA | ||||||||||
秋葵籽 | 热水浸提法 | Sevage、DEAE-cellulose、DEAE-Sephacryl | 5.82 | 7.09×105 | ||||||||||
试验材料 | 单糖组成分析方法 | 单糖组成及摩尔质量百分比 | 可能存在结构 | 啊啊啊啊 | ||||||||||
秋葵叶片 | GC-MS | D-Ara∶D-Xyl∶D-Glc∶D-Man∶D-Gal=2.9∶3.1∶0.3∶0.4∶3.4 | NA | [7] | ||||||||||
秋葵嫩果 | HPLC、FT-IR、NMR | Rha∶GalA∶Gal=1.01∶1.00∶2.31 | 主链:-4)-α-d-GalAp-(1,2,4)-α-l-Rhap-(1-galactan侧链部分O-4被Rhap取代 | [75] | ||||||||||
秋葵种子 | HPLC | Rha, Ara, D-Xyl, D-Fru和D-Glc为主要成分 | NA | [76] | ||||||||||
秋葵果荚 | GC-MS HPLC FT-IR | Rha∶Ara∶Glc∶Gal∶GalA=4.75∶2.01∶1.00∶4.91∶7.24 | 1,4-linked galacturonan units (homogalacturonan backbone) and (1→2) and (1→2,4) linked Rha (rhamnogalacturonan I region). And the other side chains contained→1)-linked Ara, (1→5)-linked Ara, (1→4)-linked Glc, (1→6)-linked Gal, (1→4)-linked Rha, (1→2,4)-linked Rha,→1)-linked Ara and→1)-linked Gal | [11] | ||||||||||
秋葵果荚 | GC、NMR | Ara∶Gal=1.0∶18.3,Rha和GalA相近 | 主链:→4)-D-GalpAMe-(1→2)-L-Rhap-(1→侧链:Galp-β-D-(1→4)-Galp-β-D-(1→4)-Galp-β-D-(1→4)-Galp-β-D-(1→4)-Galp-β-D-(1→Araf-α-L-(1→6)-Galp-β-D-(1→4)-Galp-β-D-(1→4)-Galp-β-D-(1→4)-Galp-β-D-(1→ | [77] | ||||||||||
秋葵叶片 | FT-IR、NMR | Gal∶GalA∶Rha∶Ara≈10.8∶5.8∶1.8∶1 | 多分支、高度乙酰化和未甲基化多糖 | [78] | ||||||||||
木质化秋葵果荚 | FT-IR、NMR、GC | Gal∶Rha∶Glc∶Ara∶GalA=1.98∶1.00∶0.15∶0.32∶0.29 | →2)-α-D-Rhap-(1→,→4)-β-D-Galp-(1→,→4)-α-D-GalpA-(1→,→6)-β-D-Galp-(1→, β-D-Glcp-(1→and α-L-Araf-(1→ | [79] | ||||||||||
秋葵果荚 | FT-IR、NMR | Rha∶Gal∶GalA∶Man∶Ara=1∶2.3∶1.03∶0.42∶0.23 | 主链:-4)-α-D-GalAp-(1,2,4)-α-L-Rhap-(1-侧链:β-D-Galp-(1,4)-β-D-Galp-(1-or α-L-Araf-(1, 4)-β-D-Galp-(1-重复单元 | [80] | ||||||||||
秋葵花 | GC、FT-IR | Gal∶Rha=2.23∶1和少部分Ara\Glc和Man | NA | [81] | ||||||||||
秋葵花 | FT-IR、NMR、PMP-HPLC-UV | Rha∶GalA∶Gal=1∶∶1.02∶0.86 | 2)-α-D-Rhap-(1→4)-α-D-GalpA-(1→2,4)-α-D-Rhap-(1→4)-α-D-GalpA-(1 | [55] | ||||||||||
秋葵果荚 | HPLC、FT-IR、NMR | Man∶Rha∶GluA,∶GalA∶Glc∶Ara=1.0∶0.9∶3.5∶3.5∶11.7∶1.0 | T-linked-Araf, 1,4-linked-Glcp, 1,6-linkedGlcp, 1,4-linked-GalAp, 1,2-linked-Rhap, 1,6-linked-Manp, 1,4-linked-GlcAp and 1,2,4-linked-Rhap. | [82] | ||||||||||
秋葵果荚 | HPLC、FT-IR、NMR | Man∶Rha∶GalAc∶Glc∶Gal=1.0∶ 8.0∶3.2∶1.2∶15.0 | 1,3-,1,6-, 1,3,6-linkedGalp. The branched structures in AEP-2include 1,2-linked Rhap, 1,4-linked GalA | [82] | ||||||||||
秋葵果荚 | HPLC、NMR | Gal∶Rha∶Fru∶Ara∶Glc∶GalA∶Mann=32.53∶19.76∶17.21∶13.38∶8.94∶5.24∶2.94 | NA | [83] | ||||||||||
秋葵果荚 | HPLC、NMR | Man∶Rha∶GalA∶Gal=0.84∶3.12∶2.15∶5.89. | NA | [83] | ||||||||||
秋葵果荚 | PMP-HPLC、NMR | Rha∶GalA∶Gal∶GlcA∶Glc∶Ara=21.4∶34.9∶29.6∶4.5∶5.9∶3.7 | 鼠李半乳糖醛酸聚糖-I为主链,鼠李半乳糖醛酸聚糖-II中阿拉伯半聚乳糖侧链部分O-4被Rhap取代 | [84] | ||||||||||
秋葵果荚 | HPLC | Man∶Rha∶GluA∶GalA∶Gal∶Ara=3.4∶3.76∶24.19∶6.27∶8.73∶3.13 | NA | [85] | ||||||||||
秋葵果荚 | IC、FT-IR | Rha∶Ara∶Gal∶Glc∶GluA=4.7±0.06∶1.6±0.05∶34.1±0.15∶50.3±0.22∶9.4±0.06 | NA | [86] | ||||||||||
秋葵果荚 | IC、FT-IR | Rha∶Ara∶Gal∶Glc∶GluA=11.6±0.09∶5.7±0.05∶55.5±0.14∶14.7±0.12∶12.4±0.08 | NA | [86] | ||||||||||
秋葵果荚 | GC-MS、FT-IR、NMR | D-Gal∶L-Rha∶L-Ara∶D-Glc=18.4∶11.0∶2.3∶0.9 | NA | [87] | ||||||||||
秋葵果荚 | GC、FTIR、HPLC | Glc∶Man∶Gal∶Ara∶Xyl∶Fru∶Rha=28.8∶12.5∶13.1∶15.9∶9.2∶13.7∶6.8 | NA | [88] | ||||||||||
秋葵果荚 | RP-HPLC、FT-IR | Gal∶GalA∶Glc∶Rha∶GlcA∶Man∶Ara∶Fuc∶Xyl=50.5∶25.9∶8.2∶7.4∶2.9∶2.1∶1.9∶0.6∶0.5 | 主链:鼠李半乳糖醛酸聚糖-I,长半乳糖侧链 | [89] | ||||||||||
秋葵果荚 | ESI-IT-MS、NMR | Rha∶Gal∶Glu∶GalA∶GlcA=26∶34∶1∶35∶3 | 主要为鼠李半乳糖醛酸聚糖-I,侧链上为短半乳糖残基(85%)和少量同型半乳糖醛酸聚糖1,2,4-linked a-Rhap\1,4-linked a-GalpA (RG I)\t-a Galp\1,4-linked Galp\t-b-Galp | [90] | ||||||||||
秋葵果荚 | ESI-IT-MS、NMR | Rha∶Ara∶Gal∶Glu∶GalA∶GlcA=14∶3∶17∶1∶63∶2 | 主要为同型半乳糖醛酸聚糖,少量鼠李半乳糖醛酸聚糖-I(24%)和1,2-linked-和1,2,4-linked rhamnosyl重复单元, O-3替换为O-acetylated | [90] | ||||||||||
秋葵果荚 | GC-MS、FT-IR、NMR、 HPLC | β-D-glc∶α-D-Man∶α-D-Gala∶α-L-Fuc=1.00∶0.91∶2.14∶1.09 | →6)α-D-Galp-(1→6)α-D-Manp-(1→6)α-D-Galp-(1→重复和分支β-D-Glcp(1→3)α-Fucp-(1→;O-3被Man替代 | [91] | ||||||||||
秋葵果荚 | HPLC、GC-MS | Rha∶Ara∶Xyl∶Man∶Gal∶Glc=19.9∶2.1∶1.3∶0.5∶18.2∶3.7 | NA | [58] | ||||||||||
秋葵果肉 | HPLC、FT-IR | Gal∶Rha∶GalA∶Xyl∶Ara=7.3∶2.9∶2.5∶1∶1.1 | NA | [92] | ||||||||||
秋葵种子 | HPLC | Rha、Ara、D-Xyl、D-Fru、D-Glc | NA | [64] | ||||||||||
秋葵茎秆 | HPLC | GlcA、Xyl、Fuc、GalA和Ara | NA | [68] | ||||||||||
秋葵籽 | GC | Man∶Gal∶Xyl∶Ara∶Rha=38.06∶30.38∶17.77∶11.02∶2.78 | NA | [66] | ||||||||||
秋葵果皮 | HPLC | Man∶Rha∶GlcA∶Gal=0.1∶7.0∶0.4∶5.8∶0.9∶14.6∶1.5 | NA | [61] | ||||||||||
秋葵果皮 | HPLC | Rha∶GalA∶Gal∶Ara=4.7∶61.8∶9.6∶5.3 | NA | [61] | ||||||||||
秋葵果皮 | HPLC | Man∶Rha∶GalA∶Glc∶Gal∶Ara=9.5∶5.4∶1.3∶10.8∶2.4∶7.6 | NA | [61] | ||||||||||
秋葵果荚 | HPLC | Rha∶GlcA∶Man∶Glc=34.44∶24.12∶10.84∶4.68 | NA | [93] | ||||||||||
秋葵籽 | 高碘酸氧化、Smith降解、FT-IR | Man∶Gal∶Xyl∶Ara∶Rha=36.98∶31.29∶15.61∶8.87∶3.37 | 含有甘露糖残基,1→、1→6、1→2、1→2,6糖苷键 | [65] |
表1 不同提取方法下黄秋葵多糖结构
试验材料 | 提取方法 | 纯化方法 | 提取率/% | 平均分子量/u | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
秋葵叶片 | 热水浸提法 | TCA、DEAE-cellulose、DEAE-Sephadex | 7.1 | 1.9×105 | ||||||||||
秋葵嫩果 | 超声波辅助法 | DEAE-cellulose | 13.99±0.52 | 2.19×105 | ||||||||||
秋葵种子 | 热水浸提法 | DEAE-Sephadex | NA | NA | ||||||||||
秋葵果荚 | NA | NA | NA | 2.174×106 | ||||||||||
秋葵果荚 | 热水浸提法 | HP-5 column、DEAE-Sepharose、超滤膜(100 kDa) | 1.10 | >2.99×106 | ||||||||||
秋葵叶片 | 超声波辅助法 | NA | 3.11 | 26.9×103 | ||||||||||
木质化秋葵果荚 | 热水浸提法 | Sevage、DEAE cellulose | 0.50 | 6.59×105 | ||||||||||
秋葵果荚 | 超声波辅助法 | DEAE cellulose | NA | 2.84×105 | ||||||||||
秋葵花 | 水浸提法 | DEAE cellulose、DEAE-Sephacryl | NA | 1.7×105 | ||||||||||
秋葵花 | 热水浸提法 | DEAE cellulose、DEAE-Sephacryl | 15.36 | 2.741×105 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE cellulose | NA | 5 198 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE cellulose | NA | 2 121 804 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE celluloseDEAE-Sephacryl | NA | 9.12×104 | ||||||||||
秋葵果荚 | 碱提法 | DEAE cellulose、Sephacryl | NA | 9.79×104 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE-cellulose、DEAE-Sepharose | 7.90 | 5.8×105 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE-Sepharose | 0.59 | NA | ||||||||||
秋葵果荚 | 微波辅助法(20 kHz) | Sevage | 13.14±0.05 | 7.28~732.83×105 | ||||||||||
秋葵果荚 | 微波辅助法(40/60 kHz) | Sevage | 14.15±0.04 | 0.85~714.93×105 | ||||||||||
秋葵果荚 | 热水浸提法 | HP-5 column | 14.6±1.2 | 1.202×106 | ||||||||||
秋葵果荚 | 超声波辅助法 | DEAE-Sepharose | 10.35±0.11 | 1.92×105 | ||||||||||
秋葵果荚 | 超声波辅助法 | DEAE-cellulose | NA | 3.86×105 | ||||||||||
秋葵果荚 | 热水浸提法 | NA | NA | NA | ||||||||||
秋葵果荚 | 螯合剂法 | NA | NA | NA | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE-cellulose、DEAE-Sephadex | 8.60 | 8.8×103 | ||||||||||
秋葵果荚 | 热水浸提法 | DEAE-Sepharose、TCA | 1.3 | 1 380 | ||||||||||
秋葵果肉 | 热水浸提法 | NA | 29.40 | 6 436×103~7 432×103 | ||||||||||
秋葵种子 | 水提醇沉法 | DEAE-Sephadex、透析 | NA | 191 838.9 | ||||||||||
秋葵茎秆 | 超声波辅助法 | 乙醇和硫酸铵的双水相萃取体系 | 23.59 | NA | ||||||||||
秋葵籽 | 热水浸提法 | DEAE cellulose、DEAE-Sephacryl | 5.82 | 7.09×105 | ||||||||||
秋葵果皮 | 热水浸提法 | Sevag,透析48 h脱盐 | NA | NA | ||||||||||
秋葵果皮 | 螯合剂提取法 | Sevag,透析48 h脱盐 | NA | NA | ||||||||||
秋葵果皮 | 碱提取法 | Sevag,透析48 h脱盐 | NA | NA | ||||||||||
秋葵果荚 | 超声波辅助法 | NA | 6.88 | NA | ||||||||||
秋葵籽 | 热水浸提法 | Sevage、DEAE-cellulose、DEAE-Sephacryl | 5.82 | 7.09×105 | ||||||||||
试验材料 | 单糖组成分析方法 | 单糖组成及摩尔质量百分比 | 可能存在结构 | 啊啊啊啊 | ||||||||||
秋葵叶片 | GC-MS | D-Ara∶D-Xyl∶D-Glc∶D-Man∶D-Gal=2.9∶3.1∶0.3∶0.4∶3.4 | NA | [7] | ||||||||||
秋葵嫩果 | HPLC、FT-IR、NMR | Rha∶GalA∶Gal=1.01∶1.00∶2.31 | 主链:-4)-α-d-GalAp-(1,2,4)-α-l-Rhap-(1-galactan侧链部分O-4被Rhap取代 | [75] | ||||||||||
秋葵种子 | HPLC | Rha, Ara, D-Xyl, D-Fru和D-Glc为主要成分 | NA | [76] | ||||||||||
秋葵果荚 | GC-MS HPLC FT-IR | Rha∶Ara∶Glc∶Gal∶GalA=4.75∶2.01∶1.00∶4.91∶7.24 | 1,4-linked galacturonan units (homogalacturonan backbone) and (1→2) and (1→2,4) linked Rha (rhamnogalacturonan I region). And the other side chains contained→1)-linked Ara, (1→5)-linked Ara, (1→4)-linked Glc, (1→6)-linked Gal, (1→4)-linked Rha, (1→2,4)-linked Rha,→1)-linked Ara and→1)-linked Gal | [11] | ||||||||||
秋葵果荚 | GC、NMR | Ara∶Gal=1.0∶18.3,Rha和GalA相近 | 主链:→4)-D-GalpAMe-(1→2)-L-Rhap-(1→侧链:Galp-β-D-(1→4)-Galp-β-D-(1→4)-Galp-β-D-(1→4)-Galp-β-D-(1→4)-Galp-β-D-(1→Araf-α-L-(1→6)-Galp-β-D-(1→4)-Galp-β-D-(1→4)-Galp-β-D-(1→4)-Galp-β-D-(1→ | [77] | ||||||||||
秋葵叶片 | FT-IR、NMR | Gal∶GalA∶Rha∶Ara≈10.8∶5.8∶1.8∶1 | 多分支、高度乙酰化和未甲基化多糖 | [78] | ||||||||||
木质化秋葵果荚 | FT-IR、NMR、GC | Gal∶Rha∶Glc∶Ara∶GalA=1.98∶1.00∶0.15∶0.32∶0.29 | →2)-α-D-Rhap-(1→,→4)-β-D-Galp-(1→,→4)-α-D-GalpA-(1→,→6)-β-D-Galp-(1→, β-D-Glcp-(1→and α-L-Araf-(1→ | [79] | ||||||||||
秋葵果荚 | FT-IR、NMR | Rha∶Gal∶GalA∶Man∶Ara=1∶2.3∶1.03∶0.42∶0.23 | 主链:-4)-α-D-GalAp-(1,2,4)-α-L-Rhap-(1-侧链:β-D-Galp-(1,4)-β-D-Galp-(1-or α-L-Araf-(1, 4)-β-D-Galp-(1-重复单元 | [80] | ||||||||||
秋葵花 | GC、FT-IR | Gal∶Rha=2.23∶1和少部分Ara\Glc和Man | NA | [81] | ||||||||||
秋葵花 | FT-IR、NMR、PMP-HPLC-UV | Rha∶GalA∶Gal=1∶∶1.02∶0.86 | 2)-α-D-Rhap-(1→4)-α-D-GalpA-(1→2,4)-α-D-Rhap-(1→4)-α-D-GalpA-(1 | [55] | ||||||||||
秋葵果荚 | HPLC、FT-IR、NMR | Man∶Rha∶GluA,∶GalA∶Glc∶Ara=1.0∶0.9∶3.5∶3.5∶11.7∶1.0 | T-linked-Araf, 1,4-linked-Glcp, 1,6-linkedGlcp, 1,4-linked-GalAp, 1,2-linked-Rhap, 1,6-linked-Manp, 1,4-linked-GlcAp and 1,2,4-linked-Rhap. | [82] | ||||||||||
秋葵果荚 | HPLC、FT-IR、NMR | Man∶Rha∶GalAc∶Glc∶Gal=1.0∶ 8.0∶3.2∶1.2∶15.0 | 1,3-,1,6-, 1,3,6-linkedGalp. The branched structures in AEP-2include 1,2-linked Rhap, 1,4-linked GalA | [82] | ||||||||||
秋葵果荚 | HPLC、NMR | Gal∶Rha∶Fru∶Ara∶Glc∶GalA∶Mann=32.53∶19.76∶17.21∶13.38∶8.94∶5.24∶2.94 | NA | [83] | ||||||||||
秋葵果荚 | HPLC、NMR | Man∶Rha∶GalA∶Gal=0.84∶3.12∶2.15∶5.89. | NA | [83] | ||||||||||
秋葵果荚 | PMP-HPLC、NMR | Rha∶GalA∶Gal∶GlcA∶Glc∶Ara=21.4∶34.9∶29.6∶4.5∶5.9∶3.7 | 鼠李半乳糖醛酸聚糖-I为主链,鼠李半乳糖醛酸聚糖-II中阿拉伯半聚乳糖侧链部分O-4被Rhap取代 | [84] | ||||||||||
秋葵果荚 | HPLC | Man∶Rha∶GluA∶GalA∶Gal∶Ara=3.4∶3.76∶24.19∶6.27∶8.73∶3.13 | NA | [85] | ||||||||||
秋葵果荚 | IC、FT-IR | Rha∶Ara∶Gal∶Glc∶GluA=4.7±0.06∶1.6±0.05∶34.1±0.15∶50.3±0.22∶9.4±0.06 | NA | [86] | ||||||||||
秋葵果荚 | IC、FT-IR | Rha∶Ara∶Gal∶Glc∶GluA=11.6±0.09∶5.7±0.05∶55.5±0.14∶14.7±0.12∶12.4±0.08 | NA | [86] | ||||||||||
秋葵果荚 | GC-MS、FT-IR、NMR | D-Gal∶L-Rha∶L-Ara∶D-Glc=18.4∶11.0∶2.3∶0.9 | NA | [87] | ||||||||||
秋葵果荚 | GC、FTIR、HPLC | Glc∶Man∶Gal∶Ara∶Xyl∶Fru∶Rha=28.8∶12.5∶13.1∶15.9∶9.2∶13.7∶6.8 | NA | [88] | ||||||||||
秋葵果荚 | RP-HPLC、FT-IR | Gal∶GalA∶Glc∶Rha∶GlcA∶Man∶Ara∶Fuc∶Xyl=50.5∶25.9∶8.2∶7.4∶2.9∶2.1∶1.9∶0.6∶0.5 | 主链:鼠李半乳糖醛酸聚糖-I,长半乳糖侧链 | [89] | ||||||||||
秋葵果荚 | ESI-IT-MS、NMR | Rha∶Gal∶Glu∶GalA∶GlcA=26∶34∶1∶35∶3 | 主要为鼠李半乳糖醛酸聚糖-I,侧链上为短半乳糖残基(85%)和少量同型半乳糖醛酸聚糖1,2,4-linked a-Rhap\1,4-linked a-GalpA (RG I)\t-a Galp\1,4-linked Galp\t-b-Galp | [90] | ||||||||||
秋葵果荚 | ESI-IT-MS、NMR | Rha∶Ara∶Gal∶Glu∶GalA∶GlcA=14∶3∶17∶1∶63∶2 | 主要为同型半乳糖醛酸聚糖,少量鼠李半乳糖醛酸聚糖-I(24%)和1,2-linked-和1,2,4-linked rhamnosyl重复单元, O-3替换为O-acetylated | [90] | ||||||||||
秋葵果荚 | GC-MS、FT-IR、NMR、 HPLC | β-D-glc∶α-D-Man∶α-D-Gala∶α-L-Fuc=1.00∶0.91∶2.14∶1.09 | →6)α-D-Galp-(1→6)α-D-Manp-(1→6)α-D-Galp-(1→重复和分支β-D-Glcp(1→3)α-Fucp-(1→;O-3被Man替代 | [91] | ||||||||||
秋葵果荚 | HPLC、GC-MS | Rha∶Ara∶Xyl∶Man∶Gal∶Glc=19.9∶2.1∶1.3∶0.5∶18.2∶3.7 | NA | [58] | ||||||||||
秋葵果肉 | HPLC、FT-IR | Gal∶Rha∶GalA∶Xyl∶Ara=7.3∶2.9∶2.5∶1∶1.1 | NA | [92] | ||||||||||
秋葵种子 | HPLC | Rha、Ara、D-Xyl、D-Fru、D-Glc | NA | [64] | ||||||||||
秋葵茎秆 | HPLC | GlcA、Xyl、Fuc、GalA和Ara | NA | [68] | ||||||||||
秋葵籽 | GC | Man∶Gal∶Xyl∶Ara∶Rha=38.06∶30.38∶17.77∶11.02∶2.78 | NA | [66] | ||||||||||
秋葵果皮 | HPLC | Man∶Rha∶GlcA∶Gal=0.1∶7.0∶0.4∶5.8∶0.9∶14.6∶1.5 | NA | [61] | ||||||||||
秋葵果皮 | HPLC | Rha∶GalA∶Gal∶Ara=4.7∶61.8∶9.6∶5.3 | NA | [61] | ||||||||||
秋葵果皮 | HPLC | Man∶Rha∶GalA∶Glc∶Gal∶Ara=9.5∶5.4∶1.3∶10.8∶2.4∶7.6 | NA | [61] | ||||||||||
秋葵果荚 | HPLC | Rha∶GlcA∶Man∶Glc=34.44∶24.12∶10.84∶4.68 | NA | [93] | ||||||||||
秋葵籽 | 高碘酸氧化、Smith降解、FT-IR | Man∶Gal∶Xyl∶Ara∶Rha=36.98∶31.29∶15.61∶8.87∶3.37 | 含有甘露糖残基,1→、1→6、1→2、1→2,6糖苷键 | [65] |
[1] |
LAMONT W J. Okra-A versatile vegetable crop[J]. HortTechnology, 1999, 9(2): 179-184.
DOI URL |
[2] | 魏晓明, 黄菲武, 祁勇刚, 等. 风味黄秋葵泡菜的研制[J]. 中国酿造, 2016, 35(6): 182-186. |
[3] | 张胜来, 刘溪. 冻干黄秋葵加工关键技术研究[J]. 江苏调味副食品, 2017, 34(4): 11-14, 27. |
[4] | 王仁哲. 黄秋葵复合果蔬汁饮料开发研究[D]. 成都: 西华大学, 2014. |
[5] | ULLAH S, SALEEM U, KILPELAINEN P, et al. Chemical characterization of okra stalk (Abelmoschus esculentus) as potential raw material for biorefinery utilization[J]. Cellolose Chemistry and Technology, 2018, 52(3-4):155-162. |
[6] | BAWA S H, BADRIE N. Nutrient profile, bioactive components, and functional properties of okra (Abelmoschus esculentus (L.)Moench)[M]// Fruits, Vegetables, and Herbs. Amsterdam: Elsevier, 2016: 365-409. |
[7] |
LI Q, ZHAO T, BAI S Q, et al. Water-soluble polysaccharides from leaves of Abelmoschus esculentus: purification, characterization, and antioxidant activity[J]. Chemistry of Natural Compounds, 2017, 53(3): 412-416.
DOI URL |
[8] |
ISLAM M T. Phytochemical information and pharmacological activities of okra (Abelmoschus esculentus): a literature-based review[J]. Phytotherapy Research, 2019, 33(1): 72-80.
DOI PMID |
[9] |
FEKADU GEMEDE H. Nutritional quality and health benefits of “okra” (Abelmoschus esculentus): a review[J]. International Journal of Nutrition and Food Sciences, 2015, 4(2): 208.
DOI URL |
[10] |
WHISTLER R L, CONRAD H E. A crystalline galactobiose from acid hydrolysis of okra mucilage1[J]. Journal of the American Chemical Society, 1954, 76(6): 1673-1674.
DOI URL |
[11] | PAN L C, SUN Y Y, ZHANG X L, et al. Structure, antioxidant property and protection on PC12 of a polysaccharide isolated and screened from Abelmoschus esculentus L.Moench (okra)[J]. Natural Product Research, 2022. |
[12] | HAYAZA S, WAHYUNINGSIH SPA, SUSILO RJK, et al. Anticancer activity of okra raw polysaccharides extracts against human liver cancer cells[J]. Tropical Journal of Pharmaceutical Research August, 2019, 18 (8):1667-1672. |
[13] | FAN S J, GUO L, ZHANG Y, et al. Okra polysaccharide improves metabolic disorders in high-fat diet-induced obese C57BL/6 mice[J]. Molecular Nutrition & Food Research, 2013, 57(11): 2075-2078. |
[14] |
TRAKOOLPOLPRUEK T, MOONMANGMEE S, CHANPUT W. Structure-dependent immune modulating activity of okra polysaccharide on THP-1 macrophages[J]. Bioactive Carbohydrates and Dietary Fibre, 2019, 17: 100173.
DOI URL |
[15] |
ZHENG W, ZHAO T, FENG W W, et al. Purification, characterization and immunomodulating activity of a polysaccharide from flowers of Abelmoschus esculentus[J]. Carbohydrate Polymers, 2014, 106: 335-342.
DOI URL |
[16] |
LIAO Z Z, ZHANG J Y, WANG J Y, et al. The anti-nephritic activity of a polysaccharide from okra (Abelmoschus esculentus (L.) Moench) via modulation of AMPK-Sirt1-PGC-1α signaling axis mediated anti-oxidative in type 2 diabetes model mice[J]. International Journal of Biological Macromolecules, 2019, 140: 568-576.
DOI URL |
[17] |
YAN T X, NIAN T T, LIAO Z Z, et al. Antidepressant effects of a polysaccharide from okra (Abelmoschus esculentus (L) Moench) by anti-inflammation and rebalancing the gut microbiota[J]. International Journal of Biological Macromolecules, 2020, 144: 427-440.
DOI URL |
[18] | 朱彬娜, 孙佳颖, 胡国盼, 等. 黄秋葵多糖的吸湿保湿性能研究[J]. 湖南农业科学, 2018(11): 98-100. |
[19] |
AGARWAL M, RAJANI S, MISHRA A, et al. Utilization of okra gum for treatment of tannery effluent[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2003, 52(11/12): 1049-1057.
DOI URL |
[20] |
ARCHANA G, SABINA K, BABUSKIN S, et al. Preparation and characterization of mucilage polysaccharide for biomedical applications[J]. Carbohydrate Polymers, 2013, 98(1): 89-94.
DOI PMID |
[21] |
GHORI M U, ALBA K, SMITH A M, et al. Okra extracts in pharmaceutical and food applications[J]. Food Hydrocolloids, 2014, 42: 342-347.
DOI URL |
[22] |
SHI L. Bioactivities, isolation and purification methods of polysaccharides from natural products: a review[J]. International Journal of Biological Macromolecules, 2016, 92: 37-48.
DOI PMID |
[23] | 赵焕焕. 黄秋葵多糖提取纯化及体外抗氧化活性的探讨[D]. 郑州: 郑州大学, 2012. |
[24] |
LONGE O G. Effect of boiling on the carbohydrate constituents of some non-leafy vegetables[J]. Food Chemistry, 1981, 7(1): 1-6.
DOI URL |
[25] | 宋思圆. 黄秋葵花多糖的超声提取及其结构和抗氧化活性研究[D]. 杭州: 浙江大学, 2017. |
[26] | 任丹丹, 陈谷. 响应面法优化黄秋葵多糖超声提取工艺[J]. 食品科学, 2011, 32(8): 143-146. |
[27] | 王建蕊. 黄秋葵功能成分提取及应用研究[D]. 福州: 福建农林大学, 2013. |
[28] | 于梅, 单凌越, 井瑞洁, 等. 黄秋葵超微粉多糖提取工艺的优化及其抗氧化活性测定[J]. 食品工业科技, 2018, 39(7): 175-180. |
[29] | 李晓, 陈洁, 彭源, 等. 超声辅助提取秋葵粗多糖的工艺优化及其体外抗氧化性研究[J]. 食品科技, 2019, 44(4): 211-219. |
[30] | 孟楠, 樊振江, 高雪丽. 纤维素酶法提取黄秋葵多糖的工艺优化[J]. 食品工程, 2017(4): 14-17. |
[31] | 雍成文, 王文玲, 李湘球, 等. 复合酶法提取黄秋葵多糖的响应面优化研究[J]. 中国食品添加剂, 2018(4): 99-105. |
[32] |
RABEL F M, CAPUTO A G, BUTTS E T. Separation of carbohydrates on a new polar bonded phase material[J]. Journal of Chromatography A, 1976, 126: 731-740.
DOI URL |
[33] | 胡日查. 黄秋葵多糖分离、纯化及其免疫调节活性研究[D]. 海口: 海南大学, 2015. |
[34] | 刘小攀, 田启建, 田春莲. 黄精多糖酶法脱蛋白的工艺研究[J]. 西北林学院学报, 2016, 31(1): 238-242. |
[35] | 高英春, 陈钧. 山药粗多糖脱蛋白方法的对比研究[J]. 食品科技, 2009, 34(6): 71-74. |
[36] | 罗莹, 林勤保, 赵国燕. 大枣多糖脱蛋白方法的研究[J]. 食品工业科技, 2007, 28(8): 126-128. |
[37] | 王筱瑜, 季子非, 萨日娜, 等. 银杏落叶粗多糖除蛋白方法的筛选及优化[J]. 食品工业科技, 2019, 40(10): 232-237. |
[38] | 马丽, 覃小林, 刘雄民, 等. 不同的脱蛋白方法用于螺旋藻多糖提取工艺的研究[J]. 食品科学, 2004, 25(6): 116-119. |
[39] | 苗慧琴, 霍秀文, 王阳, 等. 山药多糖脱蛋白方法的研究[J]. 食品科技, 2014, 39(1): 210-214. |
[40] | 付学鹏, 杨晓杰. 植物多糖脱色技术的研究[J]. 食品研究与开发, 2007, 28(11): 166-169. |
[41] | 朱越雄, 孙海一, 曹广力. 野生糙皮侧耳子实体多糖的脱色素效果比较[J]. 光谱实验室, 2005, 22(5): 1070-1073. |
[42] | 李崇瑛, 王安, 杨涛, 等. 食用天然色素的纯化与研究进展[J]. 中国调味品, 2007, 32(9): 18-22, 38. |
[43] | 张丛丛, 王莹, 朴美子. 响应面法优化黄秋葵多糖脱色工艺[J]. 食品工业科技, 2014, 35(19): 251-256, 263. |
[44] | 王维香, 王晓君, 黄潇, 等. 川芎多糖脱色方法比较[J]. 离子交换与吸附, 2010, 26(1): 74-82. |
[45] | 余华. 海带多糖提取条件的优化和脱蛋白研究[J]. 中国食品添加剂, 2006(3): 39-43. |
[46] | 骆文灿. 长梗黄精多糖提取、分离纯化及其抗氧化性研究[D]. 福州: 福建农林大学, 2015. |
[47] | 陈俊英, 马晓建. 静态混合器在生物多糖脱色中的应用[J]. 郑州大学学报(工学版), 2003, 24(4): 46-49. |
[48] | 李进伟, 丁霄霖. 金丝小枣多糖的提取及脱色研究[J]. 食品科学, 2006, 27(4): 150-154. |
[49] | 彭雅玲, 陈新, 王俊博, 等. 响应面法优化紫果西番莲果胶多糖脱色工艺[J]. 食品工业科技, 2018, 39(4): 166-170, 196. |
[50] | 李贵森, 廉亚楠, 赵胜男, 等. 秋葵茎秆中多糖提取纯化及抗氧化性研究[J]. 广东化工, 2018, 45(1): 12-14. |
[51] |
WANG C, YU Y B, CHEN T T, et al. Innovative preparation, physicochemical characteristics and functional properties of bioactive polysaccharides from fresh okra (Abelmoschus esculentus (L.) Moench)[J]. Food Chemistry, 2020, 320: 126647.
DOI URL |
[52] | 任丹丹. 黄秋葵多糖提取纯化及其体外结合胆酸能力和抑制肿瘤活性分析[D]. 广州: 华南理工大学, 2011. |
[53] | 何伟珍, 吴丽仙. 银耳多糖的提取分离与纯化[J]. 海峡药学, 2008, 20(7): 33-35. |
[54] |
CHEN G J, YUAN Q X, SAEEDUDDIN M, et al. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities[J]. Carbohydrate Polymers, 2016, 153: 663-678.
DOI PMID |
[55] |
ZHANG W J, XIANG Q F, ZHAO J, et al. Purification, structural elucidation and physicochemical properties of a polysaccharide from Abelmoschus esculentus L (okra) flowers[J]. International Journal of Biological Macromolecules, 2020, 155: 740-750.
DOI URL |
[56] | 张曜武, 冯雪. 膜分离制备红松松塔多糖的研究[J]. 中国林副特产, 2013(5): 18-21. |
[57] | 赵国华, 陈宗道, 李志孝, 等. 活性多糖的研究进展[J]. 食品与发酵工业, 2001, 27(7): 45-48. |
[58] |
LENGSFELD C, TITGEMEYER F, FALLER G, et al. Glycosylated compounds from okra inhibit adhesion of Helicobacter pylori to human gastric mucosa[J]. Journal of Agricultural and Food Chemistry, 2004, 52(6): 1495-1503.
DOI URL |
[59] |
YAO H Y Y, WANG J Q, YIN J Y, et al. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective[J]. Food Research International, 2021, 143: 110290.
DOI URL |
[60] |
SENGKHAMPARN N, VERHOEF R, SCHOLS H A, et al. Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench)[J]. Carbohydrate Research, 2009, 344(14): 1824-1832.
DOI URL |
[61] | 周彦强, 吴光斌, 陈发河. PMP柱前衍生化HPLC法测定黄秋葵多糖的单糖组成[J]. 食品科学, 2019, 40(4): 266-271. |
[62] |
YAN Y J, LI X, WAN M J, et al. Effect of extraction methods on property and bioactivity of water-soluble polysaccharides from Amomum villosum[J]. Carbohydrate Polymers, 2015, 117: 632-635.
DOI URL |
[63] | 吴慧玉. 黄秋葵花多糖的结构修饰、表征及对大肠杆菌发酵液中短链脂肪酸的影响[D]. 镇江: 江苏大学, 2016. |
[64] | 闵莉静, 李敬芬. 黄秋葵多糖结构分析及细胞毒性研究[J]. 北方园艺, 2013(14): 167-170. |
[65] | 刘瑞馨, 郭佳敏, 刘锐, 等. 黄秋葵籽多糖的组成结构及抗氧化活性研究[J]. 食品安全质量检测学报, 2021, 12(15): 6132-6138. |
[66] | 郭佳敏. 秋葵籽多糖结构分析及在无面筋饼干中的应用[D]. 天津: 天津科技大学, 2020. |
[67] | 吴比, 孙源, 魏亮, 等. 黄秋葵花、果、茎叶中有效成分提取和测定[J]. 特产研究, 2018, 40(4): 79-81. |
[68] | 李贵森. 秋葵茎的成分筛查及多糖活性研究[D]. 佳木斯: 佳木斯大学, 2018. |
[69] | 徐柔, 龚钰凤, 马璐瑶, 等. 秋葵果皮多糖基本结构特征、流变性能及抗氧化特性[J]. 南昌大学学报(理科版), 2019, 43(2): 144-150. |
[70] | 叶云芳. 木质化秋葵多糖的分离纯化、结构鉴定及抗炎活性研究[D]. 合肥: 合肥工业大学, 2020. |
[71] | 王喆, 马璐瑶, 林海峰, 等. 干燥方式对秋葵多糖结构特征和抗氧化性的影响[J]. 中国食品学报, 2022, 22(2): 310-318. |
[72] |
YUAN Q, HE Y, XIANG P Y, et al. Influences of different drying methods on the structural characteristics and multiple bioactivities of polysaccharides from okra (Abelmoschus esculentus)[J]. International Journal of Biological Macromolecules, 2020, 147: 1053-1063.
DOI PMID |
[73] | LI H Y, XIE L, MA Y, et al. Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra[J]. LWT-Food Science & Technology, 2019, 101: 630-638. |
[74] |
ALBA K, LAWS A P, KONTOGIORGOS V. Isolation and characterization of acetylated LM-pectins extracted from okra pods[J]. Food Hydrocolloids, 2015, 43: 726-735.
DOI URL |
[75] |
NIE X R, FU Y, WU D T, et al. Ultrasonic-assisted extraction, structural characterization, chain conformation, and biological activities of a pectic-polysaccharide from okra (Abelmoschus esculentus)[J]. Molecules (Basel, Switzerland), 2020, 25(5): 1155.
DOI URL |
[76] |
MIN L J. Study on structure analysis and cell toxicity of okra polysaccharide[J]. Advanced Materials Research, 2014, 936: 757-762.
DOI URL |
[77] |
LIU J, ZHAO Y P, WU Q X, et al. Structure characterisation of polysaccharides in vegetable “okra” and evaluation of hypoglycemic activity[J]. Food Chemistry, 2018, 242: 211-216.
DOI URL |
[78] |
OLAWUYI I F, LEE W Y. Structural characterization, functional properties and antioxidant activities of polysaccharide extract obtained from okra leaves (Abelmoschus esculentus)[J]. Food Chemistry, 2021, 354: 129437.
DOI URL |
[79] |
LIU Y, YE Y F, HU X B, et al. Structural characterization and anti-inflammatory activity of a polysaccharide from the lignified okra[J]. Carbohydrate Polymers, 2021, 265: 118081.
DOI URL |
[80] |
WU D T, HE Y, FU M X, et al. Structural characteristics and biological activities of a pectic-polysaccharide from okra affected by ultrasound assisted metal-free Fenton reaction[J]. Food Hydrocolloids, 2022, 122: 107085.
DOI URL |
[81] |
ZHENG W, ZHAO T, FENG W W, et al. Purification, characterization and immunomodulating activity of a polysaccharide from flowers of Abelmoschus esculentus[J]. Carbohydrate Polymers, 2014, 106: 335-342.
DOI URL |
[82] | GAO H, ZHANG W C, WANG B S, et al. Purification, characterization and anti-fatigue activity of polysaccharide fractions from okra (Abelmoschus esculentus (L.) Moench)[J]. Food & Function, 2018, 9(2): 1088-1101. |
[83] |
GAO H, ZHANG W C, WU Z Y, et al. Preparation, characterization and improvement in intestinal function of polysaccharide fractions from okra[J]. Journal of Functional Foods, 2018, 50: 147-157.
DOI URL |
[84] |
ZHANG T, XIANG J L, ZHENG G B, et al. Preliminary characterization and anti-hyperglycemic activity of a pectic polysaccharide from okra (Abelmoschus esculentus (L.) moench)[J]. Journal of Functional Foods, 2018, 41: 19-24.
DOI URL |
[85] |
LIAO Z Z, ZHANG J Y, LIU B, et al. Polysaccharide from okra (Abelmoschus esculentus (L.) Moench) improves antioxidant capacity via PI3K/AKT pathways and Nrf2 translocation in a type 2 diabetes model[J]. Molecules (Basel, Switzerland), 2019, 24(10): 1906.
DOI URL |
[86] |
CHEN Z L, WANG C, MA H L, et al. Physicochemical and functional characteristics of polysaccharides from okra extracted by using ultrasound at different frequencies[J]. Food Chemistry, 2021, 361: 130138.
DOI URL |
[87] |
KPODO F M, AGBENORHEVI J K, ALBA K, et al. Pectin isolation and characterization from six okra genotypes[J]. Food Hydrocolloids, 2017, 72: 323-330.
DOI URL |
[88] |
WANG K L, LI M, WEN X, et al. Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus (L.) Moench) polysaccharides based on response surface methodology and antioxidant activity[J]. International Journal of Biological Macromolecules, 2018, 114: 1056-1063.
DOI URL |
[89] |
LI X, DONG Y, GUO Y, et al. Okra polysaccharides reduced the gelling-required sucrose content in its synergistic gel with high-methoxyl pectin by microphase separation effect[J]. Food Hydrocolloids, 2019, 95: 506-516.
DOI URL |
[90] |
SENGKHAMPARN N, BAKX E J, VERHOEF R, et al. Okra pectin contains an unusual substitution of its rhamnosyl residues with acetyl and alpha-linked galactosyl groups[J]. Carbohydrate Research, 2009, 344(14): 1842-1851.
DOI PMID |
[91] |
ZHENG X, LIU Z H, LI S, et al. Identification and characterization of a cytotoxic polysaccharide from the flower of Abelmoschus manihot[J]. International Journal of Biological Macromolecules, 2016, 82: 284-290.
DOI URL |
[92] |
LI Y P, WANG X Y, LV X Y, et al. Extractions and rheological properties of polysaccharide from okra pulp under mild conditions[J]. International Journal of Biological Macromolecules, 2020, 148: 510-517.
DOI PMID |
[93] | 侯晓杰, 王喜萍, 周铭雪, 等. 秋葵多糖的提取及单糖组分的分析[J]. 现代食品, 2019(8): 176-178, 192. |
[94] |
YANG L Q, ZHANG L M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources[J]. Carbohydrate Polymers, 2009, 76(3): 349-361.
DOI URL |
[95] |
TOMODA M, SHIMADA K, SAITO Y, et al. Plant mucilages. XXVI. Isolation and structural features of a mucilage, “Okra-mucilage F, ” from the immature fruits of Abelmoschus esculentus[J]. Chemical and Pharmaceutical Bulletin, 1980, 28(10): 2933-2940.
DOI URL |
[96] |
RIDLEY B L, O'NEILL M A, MOHNEN D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling[J]. Phytochemistry, 2001, 57(6): 929-967.
DOI PMID |
[97] | MAXWELL E G, BELSHAW N J, WALDRON K W, et al. Pectin-An emerging new bioactive food polysaccharide[J]. Trends in Food Science & Technology, 2012, 24(2): 64-73. |
[98] | 李佳颖, 胡利华, 周海连, 等. 植物果胶甲酯酶与果胶甲酯酶抑制子研究进展[J]. 江苏农业科学, 2021, 49(8): 49-56. |
[99] |
BHAT U R, THARANATHAN R N. Fractionation of okra mucilage and structural investigation of an acidic polysaccharide[J]. Carbohydrate Research, 1986, 148(1): 143-147.
DOI URL |
[100] |
ELKHALIFA A E O, AL-SHAMMARI E, ADNAN M, et al. Development and characterization of novel biopolymer derived from Abelmoschus esculentus L. extract and its antidiabetic potential[J]. Molecules (Basel, Switzerland), 2021, 26(12): 3609.
DOI URL |
[101] |
MOHAN C C, HARINI K, AAFRIN B V, et al. Extraction and characterization of polysaccharides from tamarind seeds, rice mill residue, okra waste and sugarcane bagasse for its Bio-thermoplastic properties[J]. Carbohydrate Polymers, 2018, 186: 394-401.
DOI PMID |
[102] |
NAGPAL M, AGGARWAL G, JINDAL M, et al. Ultrasound, microwave and Box-Behnken design amalgamation offered superior yield of gum from Abelmoschus esculentus: Electrical, chemical and functional peculiarity[J]. Computers and Electronics in Agriculture, 2018, 145: 169-178.
DOI URL |
[103] |
HUISMAN M M H, OOSTERVELD A, SCHOLS H A. Fast determination of the degree of methyl esterification of pectins by head-space GC[J]. Food Hydrocolloids, 2004, 18(4): 665-668.
DOI URL |
[104] | 陈红, 杨许花, 查勇, 等. 植物多糖提取、分离纯化及鉴定方法的研究进展[J]. 安徽农学通报, 2021, 27(22): 32-35. |
[105] | 沈竞, 王元凤, 魏新林. 两种多糖甲基化方法的比较[J]. 上海师范大学学报(自然科学版), 2012, 41(2): 160-164. |
[106] |
BAI L L, ZHU P L, WANG W B, et al. The influence of extraction pH on the chemical compositions, macromolecular characteristics, and rheological properties of polysaccharide: the case of okra polysaccharide[J]. Food Hydrocolloids, 2020, 102: 105586.
DOI URL |
[107] |
TOMODA M, SHIMIZU N, GONDA R. Plant mucilages. XXXVI. isolation and characterization of a mucilage, “okra-mucilage R”, from the roots of Abelmoschus esculentus[J]. Chemical and Pharmaceutical Bulletin, 1985, 33(8): 3330-3335.
DOI URL |
[108] |
MAO Y J, MILLETT R, LEE C S, et al. Investigating the influence of pectin content and structure on its functionality in bio-flocculant extracted from okra[J]. Carbohydrate Polymers, 2020, 241: 116414.
DOI URL |
[109] | 张鲜艳, 崔红利, 焦稚雅, 等. 不同秋葵品种营养品质分析[J]. 山西农业大学学报(自然科学版), 2020, 40(2): 1-7. |
[110] |
王曼宇, 刘乃新, 张福顺. 植物源性多糖提取及生物活性研究进展[J]. 中国农学通报, 2021, 37(29): 34-41.
DOI |
[111] | 方积年, 丁侃. 天然药物: 多糖的主要生物活性及分离纯化方法[J]. 中国天然药物, 2007, 5(5): 338-347. |
[112] | 薛志忠, 刘思雨, 杨雅华. 黄秋葵的应用价值与开发利用研究进展[J]. 保鲜与加工, 2013, 13(2): 58-60. |
[1] | 陈银华, 吴华芬, 曹鹏飞, 周斌雄, 徐伟忠. 结香多糖的提取工艺[J]. 浙江农业科学, 2022, 63(3): 592-598. |
[2] | 金伟嘉, 卢利平, 刘晓莹, 李佳怡, 杨扬. 花椒叶黄酮的提取工艺优化及其抗氧化活性检测[J]. 浙江农业科学, 2022, 63(2): 345-351. |
[3] | 袁方池, 林云卓雅, 邓欣, 汤沁婴, 蓝陈平, 金子, 韩宝瑜, 王梦馨. 农产品中邻苯二甲酸酯类(PAEs)的提取、检测和污染状况的研究进展[J]. 浙江农业科学, 2022, 63(11): 2619-2626. |
[4] | 潘永地, 黄鹏, 梁金晨. 基于光谱特征提取永嘉县茶园分布[J]. 浙江农业科学, 2022, 63(11): 2699-2706. |
[5] | 张文婷, 孙健, 徐飞, 朱红, 岳瑞雪, 张毅, 马晨, 钮福祥. 超声辅助离子液体混合溶剂提取甘薯叶片多酚物质[J]. 浙江农业科学, 2022, 63(1): 16-19. |
[6] | 王荣慧, 白冬, 章路, 巩佳第, 余程凤, 孙玉梅, 段晓婷, 潘璐. 超声浸提ICP-OES法同时测定土壤中交换性钙、镁和速效钾[J]. 浙江农业科学, 2021, 62(9): 1853-1856. |
[7] | 马文广, 宋碧清, 郑昀晔, 邵健丰, 古吉, 徐盛春, 李素娟. 烟籽油提取工艺的优化及脂肪酸评价[J]. 浙江农业科学, 2021, 62(9): 1860-1866. |
[8] | 张进军, 张作法, 吕国英, 陆玫丹, 方立林. 浙产三叶青地下地上部分抗氧化活性比较[J]. 浙江农业科学, 2021, 62(4): 709-711. |
[9] | 冯庭辉, 贾巧君, 郭晖, 金美艳, 陈喜良, 刘峰, 梁宗锁. 超声提取黄精总酚工艺的响应面法优化[J]. 浙江农业科学, 2020, 61(9): 1780-1784. |
[10] | 周峰, 廖钰冰. 基于高分一号时序数据和动态时间弯曲算法的平原区水田信息提取[J]. 浙江农业科学, 2020, 61(4): 761-764. |
[11] | 任旭桐, 崔振华, 邱佳, 徐桂花, 刘敦华, 杨子辉, 刘凤伟. 枸杞红色素的提取工艺[J]. 浙江农业科学, 2020, 61(11): 2362-2365. |
[12] | 赵首萍, 张棋, 肖文丹, 陈德, 叶雪珠, 黄淼杰, 胡静, 高娜. 不同提取剂对土壤有效态Hg提取的效果浅析[J]. 浙江农业科学, 2020, 61(10): 2176-2181. |
[13] | 毛荣良, 李英迪, 曹艳, 黄良水, 夏其乐. 响应面法优化猴头菇多酚提取工艺[J]. 浙江农业科学, 2020, 61(10): 2092-2095. |
[14] | 徐阳, 龚榜初, 吴开云, 白杰健. 一种山桐子高质量DNA提取方法[J]. 浙江农业科学, 2019, 60(9): 1647-1650. |
[15] | 穆春宇, 汤青萍, 卜柱, 常玲玲, 付胜勇, 张蕊, 陈卫彬. 海滨锦葵提取物对青年鸽生长性能和免疫功能的影响[J]. 浙江农业科学, 2019, 60(9): 1675-1677. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||