[1] |
辛玥, 殷冠羿, 娄毅, 等. 农户视角耕地集约利用及驱动机制的内生差异研究[J]. 中国农业资源与区划, 2021, 42(11): 208-219.
|
[2] |
孙波, 王兴祥, 张桃林. 丘陵红壤耕作利用过程中土壤肥力的演变和预测[J]. 土壤学报, 2002, 39(6): 836-843.
|
[3] |
SARKER J R, SINGH B P, DOUGHERTY W J, et al. Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems[J]. Soil and Tillage Research, 2018, 175: 71-81.
|
[4] |
LI P, YING D, LI J, et al. Global-scale no-tillage impacts on soil aggregates and associated carbon and nitrogen concentrations in croplands: a meta-analysis[J]. Science of the Total Environment, 2023, 881: 163570.
|
[5] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
|
[6] |
CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777-783.
|
[7] |
BELL C W, FRICKS B E, ROCCA J D, et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities[J]. Journal of Visualized Experiments, 2013(81): e50961.
|
[8] |
DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 2016, 7: 10541.
|
[9] |
伍少福, 韩科峰, 吴良欢. 生物有机肥加专用肥对葡萄园土壤养分、微生物和产量的影响[J]. 园艺学报, 2024, 51(5): 1099-1112.
|
[10] |
寇智瑞, 周鑫斌, 徐宸, 等. 有机无机肥配施对黄壤烟田有机碳组分的影响[J]. 土壤, 2020, 52(1): 195-201.
|
[11] |
司海丽, 纪立东, 李磊, 等. 生物有机肥对宁夏盐碱地土壤养分和生物学特性的影响[J]. 土壤, 2022, 54(6): 1124-1131.
|
[12] |
蒋如, 宁诗琪, 隋宗明, 等. 长期轮作施肥处理对植烟土壤有机碳组分和酶活性的影响[J]. 土壤, 2024, 56(3):510-516.
|
[13] |
王峥宇, 廉宏利, 孙悦, 等. 秸秆还田深度对春玉米农田土壤有机碳、氮含量和土壤酶活性的影响[J]. 农业资源与环境学报, 2021, 38(4): 636-646.
|
[14] |
XIA L L, XIA Y Q, LI B L, et al. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system[J]. Agriculture, Ecosystems & Environment, 2016, 231: 24-33.
|
[15] |
HE H, PENG M W, LU W D, et al. Organic fertilizer substitution promotes soil organic carbon sequestration by regulating permanganate oxidizable carbon fractions transformation in oasis wheat fields[J]. CATENA, 2023, 221: 106784.
|
[16] |
ZHOU Y, ZHANG J W, XU L, et al. Long-term fertilizer postponing promotes soil organic carbon sequestration in paddy soils by accelerating lignin degradation and increasing microbial necromass[J]. Soil Biology and Biochemistry, 2022, 175: 108839.
|
[17] |
MAYER M, KRAUSE H M, FLIESSBACH A, et al. Fertilizer quality and labile soil organic matter fractions are vital for organic carbon sequestration in temperate arable soils within a long-term trial in Switzerland[J]. Geoderma, 2022, 426: 116080.
|
[18] |
刘鑫, 尹泽润, 盛浩, 等. 水稻土微生物群落、酶活性及理化性质对有机肥、石灰连续施用的响应[J]. 植物营养与肥料学报, 2024, 30(1): 63-73.
|
[19] |
LIU J A, SHU A P, SONG W F, et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria[J]. Geoderma, 2021, 404: 115287.
|